Genome-Wide Association Mapping of Seedling Biomass and Root Traits Under Different Water Conditions in Wheat

Front Genet. 2021 Apr 12:12:663557. doi: 10.3389/fgene.2021.663557. eCollection 2021.

Abstract

Drought is a major threat to global wheat production. In this study, an association panel containing 200 Chinese wheat germplasms was used for genome-wide association studies (GWASs) of genetic loci associated with eight root and seedling biomass traits under normal water and osmotic stress conditions. The following traits were investigated in wheat seedlings at the four-leaf stage: root length (RL), root number (RN), root fresh weight (RFW), root dry weight (RDW), shoot fresh weight (SFW), shoot dry weight (SDW), total fresh weight (TFW), and total dry weight (TDW). A total of 323 and 286 SNPs were detected under two water environments, respectively. Some of these SNPs were near known loci for root traits. Eleven SNPs on chromosomes 1B, 2B, 4B, and 2D had pleiotropic effects on multiple traits under different water conditions. Further analysis indicated that several genes located inside the 4 Mb LD block on each side of these 11 SNPs were known to be associated with plant growth and development and thus may be candidate genes for these loci. Results from this study increased our understanding of the genetic architecture of root and seedling biomass traits under different water conditions and will facilitate the development of varieties with better drought tolerance.

Keywords: GWAS; osmotic stress; root traits; seedling biomass; wheat.