Poorly soluble environmental antigens, including carbon pollutants, are thought to play a role in the incidence of human sarcoidosis, a chronic inflammatory granulomatous disease of unknown causation. Currently, engineered carbon products such as multiwall carbon nanotubes (MWCNT) are manufactured commercially and have been shown to elicit acute and chronic inflammatory responses in experimental animals, including the production of granulomas or fibrosis. Several years ago, we hypothesized that constructing an experimental model of chronic granulomatosis resembling that associated with sarcoidosis might be achieved by oropharyngeal instillation of MWCNT into mice. This review summarizes the results of our efforts to define mechanisms of granuloma formation and identify potential therapeutic targets for sarcoidosis. Evidence is presented linking findings from the murine MWCNT granuloma model to sarcoidosis pathophysiology. As our goal was to determine what pulmonary inflammatory pathways might be involved, we utilized mice of knock-out (KO) backgrounds which corresponded to deficiencies noted in sarcoidosis patients. A primary example of this approach was to study mice with a myeloid-specific knock-out of the lipid-regulated transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) which is strikingly depressed in sarcoidosis. Among the major findings associated with PPARγ KO mice compared to wild-type were: (1) exacerbation of granulomatous and fibrotic histopathology in response to MWCNT; (2) elevation of inflammatory mediators; and (3) pulmonary retention of a potentially antigenic ESAT-6 peptide co-instilled with MWCNT. In line with these data, we also observed that activation of PPARγ in wild-type mice by the PPARγ-specific ligand, rosiglitazone, significantly reduced both pulmonary granuloma and inflammatory mediator production. Similarly, recognition of a deficiency of ATP-binding cassette (ABC) lipid transporter ABCG1 in sarcoidosis led us to study MWCNT instillation in myeloid-specific ABCG1 KO mice. As anticipated, ABCG1 deficiency was associated with larger granulomas and increased levels of inflammatory mediators. Finally, a transcriptional survey of alveolar macrophages from MWCNT-instilled wild-type mice and human sarcoidosis patients revealed several common themes. One of the most prominent mediators identified in both human and mouse transcriptomic analyses was MMP12. Studies with MMP12 KO mice revealed similar acute reactions to those in wild-type but at chronic time points where wild-type maintained granulomatous disease, resolution occurred with MMP12 KO mice suggesting MMP12 is necessary for granuloma progression. In conclusion, these studies suggest that the MWCNT granuloma model has relevance to human sarcoidosis study, particularly with respect to immune-specific pathways.
Keywords: alveolar macrophages; granuloma; multiwall carbon nanotubes; sarcoidosis.