To develop potential technetium-99m single-photon emission computed tomography (SPECT) imaging agents for bacterial infection imaging, the novel norfloxacin isonitrile derivatives CN4NF and CN5NF were synthesized and radiolabeled with a [99mTc][Tc(I)]+ core to obtain [99mTc]Tc-CN4NF and [99mTc]Tc-CN5NF. These compounds were produced in high radiolabeling yields and showed hydrophilicity and good stability in vitro. The bacterial binding assay indicated that [99mTc]Tc-CN4NF and [99mTc]Tc-CN5NF were specific to bacteria. Compared with [99mTc]Tc-CN4NF, biodistribution studies of [99mTc]Tc-CN5NF showed a higher uptake in bacteria-infected tissues than in turpentine-induced abscesses, indicating that [99mTc]Tc-CN5NF could distinguish bacterial infection from sterile inflammation. In addition, [99mTc]Tc-CN5NF had higher abscess/blood and abscess/muscle ratios. SPECT image of [99mTc]Tc-CN5NF showed that there was a clear accumulation in the infection site, suggesting that it could be a potential bacterial infection imaging radiotracer.
Keywords: infection imaging; isonitriles; norfloxacin; quinolones; technetium-99m.