Objective: To evaluate temporal correlations between CSF and neuroimaging (PET and MRI) measures of amyloid, tau, and neurodegeneration in relation to Alzheimer disease (AD) progression.
Methods: A total of 371 cognitively unimpaired and impaired participants enrolled in longitudinal studies of AD had both CSF (β-amyloid [Aβ]42, phosphorylated tau181, total tau, and neurofilament light chain) and neuroimaging (Pittsburgh compound B [PiB] PET, flortaucipir PET, and structural MRI) measures. The pairwise time interval between CSF and neuroimaging measures was binned into 2-year periods. Spearman correlations identified the time bin when CSF and neuroimaging measures most strongly correlated. CSF and neuroimaging measures were then binarized as biomarker-positive or biomarker-negative using Gaussian mixture modeling. Cohen kappa coefficient identified the time bin when CSF measures best agreed with corresponding neuroimaging measures when determining amyloid, tau, and neurodegeneration biomarker positivity.
Results: CSF Aβ42 and PiB PET showed maximal correlation when collected within 6 years of each other (R ≈ -0.5). CSF phosphorylated tau181 and flortaucipir PET showed maximal correlation when CSF was collected 4 to 8 years prior to PET (R ≈ 0.4). CSF neurofilament light chain and cortical thickness showed low correlation, regardless of time interval (R avg ≈ -0.3). Similarly, CSF total tau and cortical thickness had low correlation, regardless of time interval (R avg < -0.2).
Conclusions: CSF Aβ42 and PiB PET best agree when acquired in close temporal proximity, whereas CSF phosphorylated tau precedes flortaucipir PET by 4 to 8 years. CSF and neuroimaging measures of neurodegeneration have low correspondence and are not interchangeable at any time interval.
© 2021 American Academy of Neurology.