Depression associated with structural brain abnormalities is hypothesized to be related with accelerated brain aging. However, there is far from a unified conclusion because of clinical variations such as medication status, cumulative illness burden. To explore whether brain age is accelerated in never-treated first-episode patients with depression and its association with clinical characteristics, we constructed a prediction model where gray matter volumes measured by voxel-based morphometry derived from T1-weighted MRI scans were treated as features. The prediction model was first validated using healthy controls (HCs) in two Chinese Han datasets (Dataset 1, N = 130 for HCs and N = 195 for patients with depression; Dataset 2, N = 270 for HCs) separately or jointly, then the trained prediction model using HCs (N = 400) was applied to never-treated first-episode patients with depression (N = 195). The brain-predicted age difference (brain-PAD) scores defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with age-, gender-, educational level-matched HCs in Dataset 1. Overall, patients presented higher brain-PAD scores suggesting patients with depression having an "older" brain than expected. More specially, this difference occurred at illness onset (illness duration <3 months) and following 2 years then disappeared as the illness further advanced (>2 years) in patients. This phenomenon was verified by another data-driven method and significant correlation between brain-PAD scores and illness duration in patients. Our results reveal that accelerated brain aging occurs at illness onset and suggest it is a stage-dependent phenomenon in depression.
Keywords: brain age; first-episode depression; machine learning; structural brain imaging.
© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.