Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and insulin resistance, has been recognized as a risk factor for cognitive impairment and dementia, including Alzheimer's disease (AD). Insulin receptor substrate2 (IRS2) is a major component of the insulin/insulin-like growth factor-1 signaling pathway. Irs2 deletion leads to life-threatening T2DM, promoting premature death in male mice regardless of their genetic background. Here, we showed for the first time that young adult male mice lacking Irs2 on a C57BL/6J genetic background (Irs2-/-/6J) survived in different experimental environments and displayed hippocampus-associated behavioral alterations. Young adult male Irs2-/-/6J mice also exhibit aberrant alterations in energy and nutrient sensors, such as AMP-activated protein kinase (AMPK) and glucose transporter3 (GLUT3), and reduced core body temperature accompanied by abnormal change in the temperature sensor in the brain. These results suggest that Irs2 deficiency-induced impairments of brain energy metabolism and thermoregulation contribute to hippocampus-associated behavioral changes in young adult male mice.
Keywords: AMPK; Behavior; GLUT3; Hippocampus; Insulin; Irs2; TRPV4; Type2 diabetes.
Copyright © 2021 Elsevier Inc. All rights reserved.