Antibiofouling Ultrathin Poly(amidoxime) Membrane for Enhanced U(VI) Recovery from Wastewater and Seawater

ACS Appl Mater Interfaces. 2021 May 12;13(18):21272-21285. doi: 10.1021/acsami.1c02882. Epub 2021 May 4.

Abstract

Although eco-friendly amidoxime-based adsorbents own an excellent uranium (U)-adsorption capacity, their U-adsorption efficiency is commonly reduced and even damaged by the biological adhesion from bacteria/microorganisms in an aqueous environment. Herein, we present an antibiofouling ultrathin poly(amidoxime) membrane (AUPM) with highly enhanced U-adsorption performance, through dispersing the quaternized chitosan (Q-CS) and poly(amidoxime) in a cross-linked sulfonated cellulose nanocrystals (S-CNC) network. The cross-linked S-CNC not only can elevate the hydrophilicity to improve the U-adsorption efficiency of AUPM but also can enhance the mechanical strength to form a self-supporting ultrathin membrane (17.21 MPa, 10 μm thickness). More importantly, this AUPM owns a good antibiofouling property, owing to the broad-spectrum antibacterial quaternary ammonium groups of the Q-CS. As a result, within the 1.00 L of low-concentration (100 ppb) U-added pure water (pH ≈ 5) and seawater (pH ≈ 8) for 48 h, 30 mg of AUPM can recover 93.7% U and 91.4% U, respectively. Furthermore, compared with the U-absorption capacity of a blank membrane without the Q-CS, that of AUPM can significantly increase 37.4% reaching from 6.39 to 8.78 mg/g after being in natural seawater for only 25 d. Additionally, this AUPM can still maintain almost constant tensile strength during 10 cycles of adsorption-desorption, which indicates the relatively long-term usability of AUPM. This AUPM will be a promising candidate for highly efficient and large-scale U-recovery from both U-containing waste freshwater/seawater and natural seawater, which will be greatly helpful to deal with the U-pollution and enrich U for the consumption of nuclear power. More importantly, the work will provide a new convenient but universal strategy to fabricate new highly enhanced low-cost U-adsorbents, through the introduction of both an antibacterial property and a high mechanical performance, which will be a good reference for the design of new highly efficient U-adsorbents.

Keywords: amidoxime; antibiofouling; cellulose nanocrystals; ultrathin membrane; uranium recovery.

MeSH terms

  • Adsorption
  • Biofouling / prevention & control*
  • Membranes, Artificial*
  • Oximes / chemistry*
  • Polymers / chemistry*
  • Seawater / chemistry*
  • Uranium / chemistry
  • Uranium / isolation & purification*
  • Wastewater / chemistry*

Substances

  • Membranes, Artificial
  • Oximes
  • Polymers
  • Waste Water
  • amidoxime
  • Uranium