68Ga-PSMA-11 PET, 18F-PSMA-1007 PET, and MRI for Gross Tumor Volume Delineation in Primary Prostate Cancer: Intermodality and Intertracer Variability

Pract Radiat Oncol. 2021 May-Jun;11(3):202-211. doi: 10.1016/j.prro.2020.11.006.

Abstract

Purpose: To assess the intermodality and intertracer variability of gallium-68 (68Ga)- or fluorine-18 (18F)-labeled prostate-specific membrane antigen (PSMA) positron emission tomography (PET) and biparametric magnetic resonance imaging (bpMRI)-based gross tumor volume (GTV) delineation for focal boosting in primary prostate cancer.

Methods: Nineteen prospectively enrolled patients with prostate cancer underwent a PSMA PET/MRI scan, divided into a 1:1 ratio between 68Ga-PSMA-11 and 18F-PSMA-1007, before radical prostatectomy (IWT140193). Four delineation teams performed manual contouring of the GTV based on bpMRI and PSMA PET imaging, separately. Index lesion coverage (overlap%) and interobserver variability were assessed. Furthermore, the distribution of the voxelwise normalized standardized uptake values (SUV%) was determined for the majority-voted (>50%) GTV (GTVmajority) and whole prostate gland to investigate intertracer variability. The median patientwise SUV% contrast ratio (SUV%-CR, calculated as median GTVmajority SUV% / median prostate gland without GTVmajority SUV%) was calculated according to the tracer used.

Results: A significant difference in overlap% favoring PSMA PET compared with bpMRI was found in the 18F subgroup (median, 63.0% vs 53.1%; P = .004) but was not present in the 68Ga subgroup (32.5% vs 50.6%; P = .100). Regarding interobserver variability, measured Sørensen-Dice coefficients (0.58 vs 0.72) and calculated mean distances to agreement (2.44 mm vs 1.22 mm) were statistically significantly lower and higher, respectively, for the 18F cohort compared with the 68Ga cohort. For the bpMRI-based delineations, the median Sørensen-Dice coefficient and mean distance to agreement were 0.63 and 1.76 mm, respectively. Median patientwise SUV%-CRs of 1.8 (interquartile range [IQR], 1.6-2.7) for 18F-PSMA and 3.3 (IQR, 2.7-5.9) for 68Ga-PSMA PET images were found.

Conclusions: Both MRI and PSMA PET provided consistent intraprostatic GTV lesion detection. However, the PSMA tracer seems to have a major influence on the contour characteristics, owing to an apparent difference in SUV% distribution in the prostate gland.

MeSH terms

  • Gallium Isotopes
  • Gallium Radioisotopes
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Niacinamide / analogs & derivatives
  • Oligopeptides
  • Positron Emission Tomography Computed Tomography*
  • Positron-Emission Tomography
  • Prostatic Neoplasms* / diagnostic imaging
  • Tumor Burden

Substances

  • Gallium Isotopes
  • Gallium Radioisotopes
  • Oligopeptides
  • PSMA-1007
  • gallium 68 PSMA-11
  • Niacinamide