2-step deep learning model for landmarks localization in spine radiographs

Sci Rep. 2021 May 4;11(1):9482. doi: 10.1038/s41598-021-89102-w.

Abstract

In this work we propose to use Deep Learning to automatically calculate the coordinates of the vertebral corners in sagittal x-rays images of the thoracolumbar spine and, from those landmarks, to calculate relevant radiological parameters such as L1-L5 and L1-S1 lordosis and sacral slope. For this purpose, we used 10,193 images annotated with the landmarks coordinates as the ground truth. We realized a model that consists of 2 steps. In step 1, we trained 2 Convolutional Neural Networks to identify each vertebra in the image and calculate the landmarks coordinates respectively. In step 2, we refined the localization using cropped images of a single vertebra as input to another convolutional neural network and we used geometrical transformations to map the corners to the original image. For the localization tasks, we used a differentiable spatial to numerical transform (DSNT) as the top layer. We evaluated the model both qualitatively and quantitatively on a set of 195 test images. The median localization errors relative to the vertebrae dimensions were 1.98% and 1.68% for x and y coordinates respectively. All the predicted angles were highly correlated with the ground truth, despite non-negligible absolute median errors of 1.84°, 2.43° and 1.98° for L1-L5, L1-S1 and SS respectively. Our model is able to calculate with good accuracy the coordinates of the vertebral corners and has a large potential for improving the reliability and repeatability of measurements in clinical tasks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Deep Learning
  • Humans
  • Lordosis / diagnostic imaging
  • Lumbar Vertebrae / diagnostic imaging*
  • Neural Networks, Computer
  • Radiography / methods
  • Reproducibility of Results
  • Spine / diagnostic imaging*