Background: Activation maps of scar-related atrial tachycardias (AT) can be challenging to interpret due to difficulty in inaccurate annotation of electrograms, and an arbitrarily predefined mapping window. A novel mapping software integrating vector data and applying an algorithmic solution taking into consideration global activation pattern has been recently described (Coherent™, Biosense Webster "Investigational").
Objective: We aimed to assess the investigational algorithm to determine the mechanism of AT compared with the standard algorithm.
Methods: This study included patients who underwent ablation of scar-related AT using the Carto 3 and the standard activation algorithm. The mapping data were analyzed retrospectively using the investigational algorithm, and the mechanisms were evaluated by two independent electrophysiologists.
Results: A total of 77 scar-related AT activation maps were analyzed (89.6% left atrium, median tachycardia cycle length of 273 ms). Of those, 67 cases with a confirmed mechanism of arrhythmia were used to compare the activation software. The actual mechanism of the arrhythmia was more likely to be identified with the investigational algorithm (67.2% vs. 44.8%, p = .009). In five patients with dual-loop circuits, 3/5 (60%) were correctly identified by the investigational algorithm compared to 0/5 (0%) with the standard software. The reduced atrial voltage was prone to lead to less capable identification of mechanism (p for trend: .05). The investigational algorithm showed higher inter-reviewer agreement (Cohen's kappa .62 vs. .47).
Conclusions: In patients with scar-related ATs, activation mapping algorithms integrating vector data and "best-fit" propagation solution may help in identifying the mechanism and the successful site of termination.
Keywords: activation mapping; algorithm; catheter ablation; mechanisms of arrhythmias; scar-related atrial tachycardia.
© 2021 Wiley Periodicals LLC.