Interleukin-6 supplementation improves post-transfer embryonic and fetal development of in vitro-produced bovine embryos

Theriogenology. 2021 Aug:170:15-22. doi: 10.1016/j.theriogenology.2021.04.004. Epub 2021 Apr 28.

Abstract

The use of in vitro produced embryos in dairy and beef cattle has increased in recent years, but compromised post-transfer pregnancy success prevents producers from capturing all the benefits this technology can provide. This study explored whether supplementing interleukin-6 (IL6) during in vitro embryo development influences post-transfer development of the embryo-proper, fetus and placenta during early gestation in cattle. Slaughterhouse-derived cumulus oocyte complexes underwent IVM (day -1) and IVF (day 0). On day 5 post-fertilization, embryos were treated with either 0 (CONT) or 100 ng/mL recombinant bovine IL6. No difference in blastocyst formation was detected on day 7.5 post-fertilization, but an increase (P < 0.05) in inner cell mass cell numbers and tendency for increased (P = 0.08) trophectoderm cell numbers were detected in IL6-treated blastocysts. A subset of the blastocysts was loaded individually into transfer straws, and embryo transfer (ET) was completed using estrous cycle stage-matched, nonlactating commercial beef and dairy cows. A subset of cows from each group underwent timed artificial insemination (TAI). Pregnancy rates were similar among all three treatment groups at day 28 and 70. No differences in crown-rump length (CRL), crown nose length (CNL), abdominal diameter (AD), or placental fluid volume (PFV) were detected between TAI and ET-IL6 groups. Reductions (P < 0.05) in CRL and AD were detected at day 56 and a tendency for a reduction (P = 0.08) in PFV was detected on day 35 when comparing the ET-CONT group with the TAI group. Reductions (P < 0.05) in CRL and PFV on day 28 and CNL and AD on day 56 as well as a tendency for a reduction (P = 0.08) in PFV on day 35 were detected when contrasting ET-CONT with ET-IL6. Circulating plasma pregnancy-associated glycoprotein concentrations were similar among all treatment groups. In summary, IL6 treatment to IVP embryos before ET produced pregnancies that more closely resembled TAI-generated pregnancies than pregnancies generated using conventionally cultured embryos. These findings failed to find any adverse effects of IL6 supplementation on early development of the embryo-proper and fetus or on placental activity. Rather, these observations suggest that IL6 treatment may normalize the developmental trajectory of the embryo-proper and fetus for in vitro produced embryos.

Keywords: Embryo quality; Embryo transfer; Fetal development; In vitro embryo production; Pregnancy.

MeSH terms

  • Animals
  • Blastocyst
  • Cattle
  • Dietary Supplements
  • Embryo Transfer / veterinary
  • Embryonic Development
  • Female
  • Fertilization in Vitro / veterinary
  • Fetal Development
  • Interleukin-6*
  • Placenta*
  • Pregnancy

Substances

  • Interleukin-6