Radiotherapy (RT) is still one of the standard cancer therapies, with up to two third of all cancer patients with solid tumors being irradiated in the course of their disease. The aim of using ionizing radiation in fractionated treatment schedules was always to achieve local tumor control by inducing DNA damage which can be repaired by surrounding normal tissue but leads to cell death in tumor cells. Meanwhile, it is known that RT also has immunological effects reshaping the tumor microenvironment. Nevertheless, RT alone often fails to elicit potent antitumor immune responses as these effects can be immunostimulatory as well as immunosuppressive. Here, we discuss how immunotherapies can be exploited in combined therapies to boost RT-induced antitumor immune responses or to counteract preexisting and RT-mediated immunosuppression to improve local and systemic tumor control. Furthermore, we highlight some parameters of radioimmunotherapies (RITs) which are under investigation for potential optimizations and how RIT approaches are tested in first phases II and III trials. Finally, we discuss how RT might affect normal and cancer stem cells.
Keywords: cancer; cancer stem cells; clinical translation; immune checkpoints; immunogenicity; immunotherapy; radiotherapy.
© 2021 The Authors. STEM CELLS published by Wiley Periodicals LLC on behalf of AlphaMed Press.