Galectin-1 is found in the vasculature and has been confirmed to promote angiogenesis in several cancer models. Furthermore, galectin-1 has been demonstrated to improve the recovery of cerebral ischemia. However, whether vascular remodeling contributes to this improvement is still unknown. In the present study, photochemical cerebral ischemia was induced in both galectin-1-treated (2 μg/day, i.c.v, 3 days) and galectin-1 knockout mice. Laser speckle imaging and immunofluorescent staining demonstrated that circulation and vascular remodeling in the ischemic cortex were improved by galectin-1 treatment but disrupted in galectin-1 knockout mice. Western blot analysis showed that the expression of matrix metallopeptidase-9 and vascular endothelial growth factor (VEGF) was regulated by galectin-1 in vivo. To determine how galectin-1 influences endothelial cells, the expression of galectin-1 in bEnd.3 cells was increased by transfection with an expression plasmid and knocked down by siRNA. As demonstrated by quantitative RT-PCR and western blot analysis, the expression of metallopeptidase-9, VEGF, and VEGF receptors was upregulated by galectin-1 overexpression but downregulated after galectin-1 knockdown. Flow cytometry, Transwell assay, and capillary-like tube formation assay were performed on cells after gene manipulation as well as cells treated by exogenous galectin-1 after anoxia. It demonstrated that galectin-1 potentiated the cell proliferation, migration capacity, and tube formation ability. Taken together, these data suggest that by targeting vascular remodeling, galectin-1 contributes to the restoration of blood flow, which promotes the recovery of mice after cerebral ischemic insults.
Keywords: Endothelial cells; Galectin-1; Ischemic stroke; Vascular remodeling.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.