N 6-methyladenosine (m6A), the most abundant modification in eukaryotic mRNAs, plays an important role in mRNA metabolism and functions. When adenosine is transcribed as the first cap-adjacent nucleotide, it is methylated at the ribose 2'-O and N6 positions, thus generating N6, 2'-O-dimethyladenosine (m6Am). Phosphorylated C-terminal domain (CTD)-interacting factor 1 (PCIF1) is a novel cap-specific adenine N6-methyltransferase responsible for m6Am formation. As PCIF1 specifically interacts with the Ser5-phosphorylated CTD of RNA polymerase II (Pol II), which is a marker for the early phase of transcription, PCIF1 is speculated to be recruited to the early elongating Pol II. In this study, subcellular fractionation and immunofluorescence microscopy demonstrated that PCIF1 is mainly localized to the transcriptionally active chromatin regions in HeLa cells. Chromatin immunoprecipitation (ChIP) revealed that PCIF1 was predominantly localized to the promoter of a broad range of Pol II-transcribed genes, including several protein-coding genes and non-coding RNA genes. Moreover, PCIF1 accumulation on these promoters depended entirely on transcriptional activity and Ser5 phosphorylation of the CTD. These results suggest that PCIF1 dynamically localizes to the Pol II early in transcription and may efficiently catalyze N6-methylation of the first adenosine residue of nascent mRNAs cotranscriptionally.
Keywords: CTD phosphorylation; PCIF1/CAPAM; RNA m6A methylation; RNA polymerase II; mRNA capping.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.