Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.
Keywords: Arabidopsis; NLR; Pseudomonas; Xanthomonas; calcium channel; cell death; disease resistance; plant immunity; resistosome; single-molecule imaging.
Copyright © 2021 Elsevier Inc. All rights reserved.