Liver fibrosis is one of the leading complications of a variety of chronic liver disorders, including the nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, liver cirrhosis and liver failure. The progression of liver fibrosis is driven by chronic inflammation, which activates the secretory fibroblasts to the myofibroblast phenotype. These specialized liver cells are called as hepatic stellate cells (HSCs). The excessive extracellular matrix (ECM) secretion creates a large number of complications. Fibrosis is the result of imbalance between the matrix synthesizing and matrix degrading factors. The major ECM proteins include the matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), lysyl oxidases (LOX), lysyl oxidase-like (LOXLs) enzymes, tenascins and others. These ECM proteins present novel avenues for the therapeutics of liver fibrosis. The current review highlights the major role played by these critical matrix proteins in liver fibrosis. Further, some of the targeted formulations used against these proteins are discussed and suggestions are provided to select the course of research for successful clinical translation of basic research findings for the amelioration of liver fibrosis.
Keywords: Liver fibrosis; extracellular matrix; lysyl oxidases (LOX); matrix metalloproteinases (MMPs); tissue inhibitor of metalloproteinases (TIMPs).
2021 Annals of Translational Medicine. All rights reserved.