CD137 (ILA/4-1BB), a member of tumor necrosis factor receptor superfamily, is one of the most important T cell costimulatory molecules. Interaction of this molecule with its ligand transmits a two-way signal that activates both T lymphocyte and antigen presenting cells. The soluble form of CD137 (sCD137) reduces the activity of its membrane isoform and is associated with T lymphocyte activation-induced cell death. Recombinant CD137-Fc may be used to treat cancers, autoimmune disorders and viral infections. It may also be useful for management of coronavirus infection. The 1276 bp DNA sequence encoded CD137-Fc recombinant protein was prepared and subcloned into lentiviral vector and expressed in transduced CHO-K1 eukaryotic cells. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot analysis, and enzyme-linked immunosorbent assay analysis results demonstrated that the expression of the 70-kDa CD137-Fc molecule was detectable without any degradation. This study helps to confirm previous research suggesting the use of this recombinant protein as a promising solution for the treatment of virus infections. CD137-Fc fusion protein could also make immunotherapy more effective for some diseases. This product is widely used in novel medical treatments, including cell-based immunotherapy such as dendritic cell, CAR T and CAR NK therapy. Its production and usage in research and treatment is noticeable also in current coronavirus disease 2019 pandemic.
Keywords: autoimmune disorders; cancer immunotherapy; coronavirus inflammation; recombinant protein CD137-Fc; sCD137.
© 2021 Wiley Periodicals LLC.