Objective: To investigate the association of voice analysis with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Patients and methods: A vocal biomarker, a unitless scalar with a value between 0 and 1, was developed based on 434 voice samples. The biomarker training was followed by a prospective, multicenter, observational study. All subjects were tested for SARS-CoV-2, had their voice recorded to a smartphone application, and gave their informed consent to participate in the study. The association of SARS-CoV-2 infection with the vocal biomarker was evaluated.
Results: The final study population included 80 subjects with a median age of 29 [range, 23 to 36] years, of whom 68% were men. Forty patients were positive for SARS-CoV-2. Infected patients were 12 times more likely to report at least one symptom (odds ratio, 11.8; P<.001). The vocal biomarker was significantly higher among infected patients (OR, 0.11; 95% CI, 0.06 to 0.17 vs OR, 0.19; 95% CI, 0.12 to 0.3; P=.001). The area under the receiver operating characteristic curve evaluating the association of the vocal biomarker with SARS-CoV-2 status was 72%. With a biomarker threshold of 0.115, the results translated to a sensitivity and specificity of 85% (95% CI, 70% to 94%) and 53% (95% CI, 36% to 69%), respectively. When added to a self-reported symptom classifier, the area under the curve significantly improved from 0.775 to 0.85.
Conclusion: Voice analysis is associated with SARS-CoV-2 status and holds the potential to improve the accuracy of self-reported symptom-based screening tools. This pilot study suggests a possible role for vocal biomarkers in screening for SARS-CoV-2-infected subjects.
Keywords: AUC, area under the receiver operating curve; COVID-19, coronavirus disease 2019; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
© 2021 The Authors.