Appetitive and aversive sensory preconditioning in rats is impaired by disruption of the postrhinal cortex

Neurobiol Learn Mem. 2021 Sep:183:107461. doi: 10.1016/j.nlm.2021.107461. Epub 2021 May 17.

Abstract

Episodic memory involves binding stimuli and/or events together in time and place. Furthermore, memories become more complex when new experiences influence the meaning of stimuli within the original memory. Thus collectively, complex episodic memory formation and maintenance involves processes such as encoding, storage, retrieval, updating and reconsolidation, which can be studied using animal models of higher-order conditioning. In the present study aversive and appetitive sensory preconditioning paradigms were used to test the hypothesis that the postrhinal cortex (POR), which is a component of the hippocampal memory system, is involved in higher-order conditioning. Drawing on the known role of the POR in contextual learning, Experiment 1 employed a four-phase sensory preconditioning task that involved fear learning and context discrimination in rats with or without permanent lesions of the POR. In parallel, to examine POR function during higher-order conditioning in the absence of a particular spatial arrangement, Experiments 2 and 3 used a three-phase sensory preconditioning paradigm involving phasic stimuli. In Experiment 2, bilateral lesions of the POR were made and in Experiment 3, a chemogenetic approach was used to temporarily inactivate POR neurons during each phase of the paradigm. Evidence of successful sensory preconditioning was observed in sham rats which, during the critical context discrimination test, demonstrated higher levels of freezing behavior when re-exposed to the paired versus the unpaired context, whereas POR-lesioned rats did not. Data from the appetitive sensory preconditioning paradigm also confirmed the hypothesis in that during the critical auditory discrimination test, sham rats showed greater food cup responding following presentations of the paired compared to the unpaired auditory stimulus, whereas POR-lesioned rats did not. Lastly, in Experiment 3, when the POR was inactivated only during preconditioning or only during conditioning, discrimination during the critical auditory test was impaired. Thus, regardless of whether stimulus-stimulus associations were formed between static or phasic stimuli or whether revaluation of the paired stimulus occurred through association with an aversive or an appetitive unconditioned stimulus, the effects were the same; POR lesions disrupted the ability to use higher-order conditioned stimuli to guide prospective behavior.

Keywords: Chemogenetics; Context discrimination; Fear learning; Postrhinal cortex; Sensory preconditioning.

MeSH terms

  • Animals
  • Appetitive Behavior
  • Association Learning / physiology*
  • Avoidance Learning
  • Conditioning, Classical / physiology
  • Discrimination Learning / physiology*
  • Fear
  • Memory Consolidation*
  • Memory, Episodic*
  • Parahippocampal Gyrus / physiology*
  • Physical Stimulation / methods
  • Rats