Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries

ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24734-24746. doi: 10.1021/acsami.1c03302. Epub 2021 May 21.

Abstract

Silicon-based anode fabrication with nanoscale structuration improves the energy density and life cycle of Li-ion batteries. As-synthesized silicon (Si) nanowires (NWs) or nanoparticles (NPs) directly on the current collector represent a credible alternative to conventional graphite anodes. However, the operating potentials of these electrodes are below the electrochemical stability window of all electrolytes used in commercial Li-ion systems. During the first charging phase of the cell, partial decomposition of the electrolyte takes place, which leads to the formation of a layer at the surface of the electrode, called solid electrolyte interphase (SEI). A stable and continuous SEI layer formation is a critical factor to achieve reliable lifetime stability of the battery. Once formed, the SEI acts as a passivation layer that minimizes further degradation of the electrolyte during cycling, while allowing lithium-ion diffusion with their subsequent insertion into the active material and ensuring reversible operation of the electrode. However, one of the major issues requiring deeper investigation is the assessment of the morphological extension of the SEI layer into the active material, which is one of the main parameters affecting the anode performances. In the present study, we use electron tomography with a low electron dose to retrieve three-dimensional information on the SEI layer formation and its stability around SiNWs and SiNPs. The possible mechanisms of SEI evolution could be inferred from the interpretation and analysis of the reconstructed volumes. Significant volume variations in the SiNW and an inhomogeneous distribution of the SEI layer around the NWs are observed during cycling and provide insights into the potential mechanism leading to the generally reported SiNW anode capacity fading. By contrast, analysis of the reconstructed SiNPs' volume for a sample undergoing one lithiation-delithiation cycle shows that the SEI remains homogeneously distributed around the NPs that retain their spherical morphology and points to the potential benefit of such nanoscale Si anode materials to improve their cycling lifetime.

Keywords: Si nanoparticle; Si nanowire; anode materials in Li-ion battery; carbon nanotube heterostructures; electron tomography; silicon-based nanostructures; solid electrolyte interphase.