Background: Osteoporosis is a common disease in aging populations. However, osteoporosis treatment is still challenging. Here, we aimed to investigate the role of neohesperidin (NEO) in osteoporosis progression and the potential mechanism.
Methods: Bone mesenchymal stem cells (BMSCs) were isolated and treated with different concentrations of NEO (0, 10, 30, 100 μM). Cell proliferation was analyzed by cell count kit-8 (CCK-8) assay. RNA-sequencing was performed on the isolated BMSCs with control and NEO treatment. Differentially expressed genes were obtained by R software. Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR was used to detect the expression of osteoblast markers. Western blot was used to evaluate the protein levels in BMSCs.
Results: NEO treatment significantly improved hBMSC proliferation at different time points, particularly when cells were incubated with 30 μM NEO (P < 0.05). NEO dose-dependently increased the ALP activity and calcium deposition than the control group (P < 0.05). A total of 855 differentially expressed genes were identified according to the significance criteria of log2 (fold change) > 1 and adj P < 0.05. DKK1 partially reversed the promotion effects of NEO on osteogenic differentiation of BMSCs. NEO increased levels of the β-catenin protein in BMSCs.
Conclusion: NEO plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of Wnt/β-catenin pathway.
Keywords: Bone mesenchymal stem cells; Neohesperidin; Wnt/β-catenin pathway.