Isolation and Culture of Resident Cardiac Macrophages from the Murine Sinoatrial and Atrioventricular Node

J Vis Exp. 2021 May 7:(171). doi: 10.3791/62236.

Abstract

Resident cardiac macrophages have been demonstrated to facilitate the electrical conduction in the heart. The physiologic heart rhythm is initiated by electrical impulses generated in sinoatrial node (SAN) and then conducted to ventricles via atrioventricular node (AVN). To further study the role of resident macrophages in cardiac conduction system, a proper isolation of resident macrophages from SAN and AVN is necessary, but it remains challenging. Here, we provide a protocol for the reliable microdissection of the SAN and AVN in murine hearts followed by the isolation and culture of resident macrophages. Both, SAN which is located at the junction of the crista terminalis with the superior vena cava, and AVN which is located at the apex of the triangle of Koch, are identified and microdissected. Correct location is confirmed by histologic analysis of the tissue performed with Masson's trichrome stain and by anti-HCN4. Microdissected tissues are then enzymatically digested to obtain single cell suspensions followed by the incubation with a specific panel of antibodies directed against cell-type specific surface markers. This allows to identify, count, or isolate different cell populations by fluorescent activated cell sorting. To differentiate cardiac resident macrophages from other immune cells in the myocardium, especially recruited monocyte-derived macrophages, a delicate devised gating strategy is needed. First, lymphoid lineage cells are detected and excluded from further analysis. Then, myeloid cells are identified with resident macrophages being determined by high expression of both CD45 and CD11b, and low expression of Ly6C. With cell sorting, isolated cardiac macrophages can then be cultivated in vitro over several days for further investigation. We, therefore, describe a protocol to isolate cardiac resident macrophages located within the cardiac conduction system. We discuss pitfalls in microdissecting and digesting SAN and AVN, and provide a gating strategy to reliably identify, count and sort cardiac macrophages by fluorescence-activated cell sorting.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Atrioventricular Node*
  • Heart Conduction System
  • Macrophages
  • Mice
  • Sinoatrial Node
  • Vena Cava, Superior*