Pyroptosis is a new type of programmed cell death identified in recent years, which destroys the integrity of cell membranes by punching pores on them, resulting in cell lysis. Light- and dark-colored vesicles/pore-like structures on the membranes of pyroptotic cells are generally observed using light microscope, accompanied by cell swelling and cytoplasmic release. However, due to the release of the cell contents in both pyroptosis and necrosis, it is difficult to distinguish them solely by morphological characteristics. The mechanism of pyroptosis involves three major signaling pathways, all activating downstream gasdermin (GSDM) D and E, which results in the formation of pores (10-15 nm) on the cell membrane, while small cytoplasmic molecules such as interleukin (IL)-1 and IL-18 flow out from the pores and cause inflammation. The occurrence of pyroptosis can be determined by a combination of markers. These include cleavage of GSDM D and E, activation and release of IL-1β and IL-18, and activation of cysteinyl aspartate specific proteinase (caspase-1, -3, -4, -5, and -11). This chapter discusses several common methods to assist researchers in detecting pyroptosis.
Keywords: Caspase; Gasdermin D/E; Interleukin-1β/-18; Pyroptosis.