Regulating the Aggregation of Unfused Non-Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells

ChemSusChem. 2021 Sep 6;14(17):3579-3589. doi: 10.1002/cssc.202100746. Epub 2021 May 26.

Abstract

Tuning molecular aggregation via structure design to manipulate the film morphology still remains as a challenge for polymer solar cells based on unfused non-fullerene acceptors (UF-NFAs). Herein, a strategy was developed to modulate the aggregation patterns of UF-NFAs by systematically varying the π-bridge (D) unit and central core (A') unit in A-D-A'-D-A framework (A and D refer to electron-withdrawing and electron-donating moieties, respectively). Specifically, the quantified contents of H- or J-aggregation and crystallite disorder of three UF-NFAs (BDIC2F, BCIC2F, and TCIC2F) were analyzed via UV/Vis spectrometry and grazing incidence X-ray scattering. The results showed that the H-aggregate-dominated BCIC2F with less crystallite disorder exhibited a more favorable blend morphology with polymer donor PBDB-T (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione)]) relative the other two UF-NFAs, resulting in improved exciton dissociation and charge tranport. Consequently, photovoltaic devices based on BCIC2F delivered a promising power conversion efficiency of 12.4 % with an exceptionally high short-circuit current density of 22.1 mA cm-2 .

Keywords: aggregation; morphology; organic semiconductors; photovoltaics; solar cells.