Objective: To assess whether neuronal signals in patients with genetic generalized epilepsy (GGE) are heritable, we examined magnetoencephalography resting-state recordings in patients and their healthy siblings.
Methods: In a prospective, cross-sectional design, we investigated source-reconstructed power and functional connectivity in patients, siblings, and controls. We analyzed 5 minutes of cleaned and awake data without epileptiform discharges in 6 frequency bands (1-40 Hz). We further calculated intraclass correlations to estimate heritability for the imaging patterns within families.
Results: Compared with controls (n = 45), patients with GGE (n = 25) showed widespread increased functional connectivity (θ to γ frequency bands) and power (δ to γ frequency bands) across the spectrum. Siblings (n = 18) fell between the levels of patients and controls. Heritability of the imaging metrics was observed in regions where patients strongly differed from controls, mainly in β frequencies, but also for δ and θ power. Network connectivity in GGE was heritable in frontal, central, and inferior parietal brain areas and power in central, temporo-parietal, and subcortical structures. Presence of generalized spike-wave activity during recordings and medication were associated with the network patterns, whereas other clinical factors such as age at onset, disease duration, or seizure control were not.
Conclusion: Metrics of brain oscillations are well suited to characterize GGE and likely relate to genetic factors rather than the active disease or treatment. High power and connectivity levels co-segregated in patients with GGE and healthy siblings, predominantly in the β band, representing an endophenotype of GGE.
Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.