Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA

Ann Bot. 2021 Nov 9;128(7):835-848. doi: 10.1093/aob/mcab063.

Abstract

Background and aims: With the advance of high-throughput sequencing, reduced-representation methods such as target capture sequencing (TCS) emerged as cost-efficient ways of gathering genomic information, particularly from coding regions. As the off-target reads from such sequencing are expected to be similar to genome skimming (GS), we assessed the quality of repeat characterization in plant genomes using these data.

Methods: Repeat composition obtained from TCS datasets of five Rhynchospora (Cyperaceae) species were compared with GS data from the same taxa. In addition, a FISH probe was designed based on the most abundant satellite found in the TCS dataset of Rhynchospora cephalotes. Finally, repeat-based phylogenies of the five Rhynchospora species were constructed based on the GS and TCS datasets and the topologies were compared with a gene-alignment-based phylogenetic tree.

Key results: All the major repetitive DNA families were identified in TCS, including repeats that showed abundances as low as 0.01 % in the GS data. Rank correlations between GS and TCS repeat abundances were moderately high (r = 0.58-0.85), increasing after filtering out the targeted loci from the raw TCS reads (r = 0.66-0.92). Repeat data obtained by TCS were also reliable in developing a cytogenetic probe of a new variant of the holocentromeric satellite Tyba. Repeat-based phylogenies from TCS data were congruent with those obtained from GS data and the gene-alignment tree.

Conclusions: Our results show that off-target TCS reads can be recycled to identify repeats for cyto- and phylogenomic investigations. Given the growing availability of TCS reads, driven by global phylogenomic projects, our strategy represents a way to recycle genomic data and contribute to a better characterization of plant biodiversity.

Keywords: Rhynchospora; Genome skimming; RepeatExplorer; holocentric; reduced-representation sequencing; satellite DNA; transposable elements.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA
  • Genome, Plant* / genetics
  • High-Throughput Nucleotide Sequencing*
  • Phylogeny
  • Sequence Analysis, DNA

Substances

  • DNA