Aims: Wuyiencin is a nucleoside antibiotic produced by Streptomyces albulus CK-15. The aim of this study was to determine whether wuyiencin can be used, as a suitable alternative to chemical pesticides, to protect cucumbers (Cucumis sativus L.) from powdery mildew caused by Sphaerotheca fuliginea. Further, the mechanisms underlying the control of cucumber powdery mildew by S. albulus CK-15 were preliminarily elucidated.
Methods and results: Wuyiencin solutions of different concentrations were used to treat infected cucumber plants under greenhouse conditions. The results indicated that wuyiencin could significantly reduce powdery mildew disease incidence, with a maximum prevention efficacy of 94·38%. Further, scanning electron micrographs and enzyme assays showed that wuyiencin inhibited S. fuliginea spore growth and elicited the activity of plant systemic resistance-related enzymes. Additionally, real-time quantitative reverse transcription PCR suggested that wuyiencin can activate a salicylic acid-dependent plant defence response.
Conclusions: Wuyiencin produced by S. albulus CK-15 possessed antifungal effects and was able to mitigate cucumber powdery mildew disease via antagonistic action. Wuyiencin also induced defence responses in the plants.
Significance and impact of the study: These results reinforce the biotechnological potential of wuyiencin as both an antagonistic agent and an inducer of plant systemic resistance.
Keywords: Sphaerotheca fuliginea; Streptomyces albulus; cucumber powdery mildew disease; fungal biocontrol agent; plant systemic resistance; wuyiencin.
© 2021 The Society for Applied Microbiology.