Background Preoperative functional MRI (fMRI) is one of several techniques developed to localize critical brain structures and brain tumors. However, the usefulness of fMRI for preoperative surgical planning and its potential effect on neurologic outcomes remain unclear. Purpose To assess the overall postoperative morbidity among patients with brain tumors by using preoperative fMRI versus surgery without this tool or with use of standard (nonfunctional) neuronavigation. Materials and Methods A systematic review and meta-analysis of studies across major databases from 1946 to June 20, 2020, were conducted. Inclusion criteria were original studies that (a) included patients with brain tumors, (b) performed preoperative neuroimaging workup with fMRI, (c) investigated the usefulness of a preoperative or intraoperative functional neuroimaging technique and used that technique to resect cerebral tumors, and (d) reported postoperative clinical measures. Pooled estimates for adverse event rate (ER) effect size (log ER, log odds ratio, or Hedges g) with 95% CIs were computed by using a random-effects model. Results Sixty-eight studies met eligibility criteria (3280 participants; 58.9% men [1555 of 2641]; mean age, 46 years ± 8 [standard deviation]). Functional deterioration after surgical procedure was less likely to occur when fMRI mapping was performed before the operation (odds ratio, 0.25; 95% CI: 0.12, 0.53; P < .001]), and postsurgical Karnofsky performance status scores were higher in patients who underwent fMRI mapping (Hedges g, 0.66; 95% CI: 0.21, 1.11; P = .004]). Craniotomies for tumor resection performed with preoperative fMRI were associated with a pooled adverse ER of 11% (95% CI: 8.4, 13.1), compared with a 21.0% ER (95% CI: 12.2, 33.5) in patients who did not undergo fMRI mapping. Conclusion From the currently available data, the benefit of preoperative functional MRI planning for the resection of brain tumors appears to reduce postsurgical morbidity, especially when used with other advanced imaging techniques, such as diffusion-tensor imaging, intraoperative MRI, or cortical stimulation. © RSNA, 2021 Online supplemental material is available for this article.