Rationale: Compound-specific stable isotope analysis (CSIA) is a powerful tool for a better understanding of trophic transfer of dietary molecules in and across ecosystems. Hydrogen isotope values (δ2 H) in consumer tissues have potential to more clearly distinguish dietary sources than 13 C or 15 N values within and among habitats, but have not been used at the fatty acid level for ecological purposes.
Methods: Here we demonstrate a new online high-capacity gas chromatography-isotope ratio mass spectrometry technique (2 H-CSIA) that offers accurate and reproducible determination of δ2 H values for a range of fatty acids from organisms of aquatic food webs.
Results: We show that lipid extracts obtained from aquatic sources, such as biofilms, leaves, invertebrates, or fish muscle tissue, have distinctive δ2 H values that can be used to assess sources and trophic interactions, as well as dietary allocation and origin of fatty acids within consumer tissue.
Conclusions: The new 2 H-CSIA method can be applied to evaluate sources and trophic dynamics of fatty acids in organisms ranging from food web ecology to migratory connectivity.
© 2021 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.