Black carbon (BC) as an important part of atmospheric aerosols imposes adverse effects on atmospheric visibility, health, and climate change. Mass absorption cross-section (MACBC) is an essential parameter in BC quantitative and model research, which is of growing concern in recent decades. In this study, we conducted real-world measurements on BC emissions from two major sources of residential biofuel stoves and diesel trucks. BC emissions and MACBC values are quantified based on the photoacoustic and thermo-optical methods. The impacts of typical factors from biofuel stoves (biofuel and stove types) and diesel trucks (vehicle types, emission standards, and driving conditions) on BC/EC, MACBC values, and the relationships between BC and EC, BC/PM2.5 and MACBC are analyzed comprehensively. We find the BC and EC emissions from these two sources present good correlations, and those emissions are almost equal from diesel trucks, while the EC emissions from biofuel burning are slightly higher than BC. The typical factors for analysis may affect the optical properties of BC, and then will affect the mass ratio of BC/EC, indirectly. We have calculated the equivalent MACBC values and compared those with previous studies. Then, we further divided the equivalent MACBC values under several typical factors, which are 5.84 and 2.71 m2/g for improved and simple biofuel stoves, and 5.91 and 4.64 m2/g for light-duty and heavy-duty diesel trucks, respectively. Furthermore, the MACBC and BC/PM2.5 under the main operational metrics generally present good correlations. Our results will help to enhance the understanding of MACBC and provide effective data support for BC quantification and atmospheric model research.
Keywords: Biofuel stoves; Black carbon; Diesel trucks; Emission factors; Mass absorption cross-section.
Copyright © 2021 Elsevier B.V. All rights reserved.