Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer

Environ Pollut. 2021 Sep 15:285:117444. doi: 10.1016/j.envpol.2021.117444. Epub 2021 May 31.

Abstract

Volatile organic compounds (VOCs) are easily degraded by oxidants during atmospheric transport. Therefore, the contribution of VOCs to ozone (O3) and secondary organic aerosol (SOA) formation at a receptor site is different from that in a source area. In this study, hourly concentrations of VOCs and other pollutants, such as O3, NOx, HONO, CO, and PM2.5, were measured in the suburbs (Daxing district) of Beijing in August 2019. The photochemical initial concentrations (PICs), in which the photochemical losses of VOCs were accounted for, were calculated to evaluate the contribution of the VOCs to O3 and SOA formation. The mean (±standard deviation) measured VOC concentrations and the PICs were 11.2 ± 5.7 and 14.6 ± 8.4 ppbv, respectively, which correspond to O3 formation potentials (OFP) of 57.8 ± 26.3 and 103.9 ± 109.4 ppbv and SOA formation potentials (SOAP) of 8.4 ± 4.1 and 10.3 ± 7.4 μg m-3, respectively. Alkenes contributed 80.5% of the consumed VOCs, followed by aromatics (13.3%) and alkanes (6.2%). The contributions of the alkenes and aromatics to the OFPPICs were 56.8% and 30.3%, respectively; while their corresponding contributions to the SOAPPICs were 1.9% and 97.3%, respectively. The OFPPICs was linearly correlated with the observed O3 concentrations (OFPPICs = 41.5 + 1.40 × cO3, R2 = 0.87). The O3 formation was associated with a VOC-limited regime at the receptor site based on the measured VOCs and changed to a transition regime and a NOx sensitive regime based on the PIC. Our results suggest that more attention should be paid to biogenic VOCs when studying O3 formation in summer in Beijing, while the control of anthropogenic aromatic compounds should be given priority in terms of SOA formation.

Keywords: O(3) pollution; Organic aerosol pollution; Photochemical initial concentrations; Photochemical loss; Volatile organic compounds.

MeSH terms

  • Aerosols / analysis
  • Air Pollutants* / analysis
  • Beijing
  • China
  • Environmental Monitoring
  • Ozone* / analysis
  • Volatile Organic Compounds* / analysis

Substances

  • Aerosols
  • Air Pollutants
  • Volatile Organic Compounds
  • Ozone