Development of efficiently catalytic strategy for oxidative purification of organic pollutants is of great significance. Photocatalysis has become one of the most important technologies in the past half a century, but the inefficiency of photocatalysts drastically suppresses its practical application. This work proposes a synergistic photopiezocatalysis of BiOIO3 under simultaneous photo-irradiation and ultrasound-vibration treatment to degrade various organic pollutants. Different from the high recombination of photo-excited charges in photocatalysis, the ultrasound-induced stress deforms the pyroelectric BiOIO3 to form a piezoelectric potential that drives photo-/thermo-generated free electrons and holes in catalyst to diffuse along opposite directions. In comparison with the single photocatalysis and piezocatalysis, the photopiezocatalysis possesses a synergistic effect, presenting evidently enhanced catalytic performance for decomposing a variety of organic dyes and a persistent organic pollutant 2,4-DCP. No apparent decrease in activity during successive five runs demonstrates that the photopiezocatalysis of BiOIO3 has a high stability and reusability. Finally, a plausible photopiezocatalysis mechanism is proposed based on the determination of active species produced on catalyst and intermediates during pollutant degradation. Our findings provide a new insight to promote charge separation and meanwhile develop an efficient synergistic photopiezocatalysis for environment remediation.
Keywords: BiOIO(3); Degradation; Dichlorophenol; Dyes; Photopiezocatalysis; Synergistic catalysis.
Copyright © 2021 Elsevier Inc. All rights reserved.