Guided bone regeneration (GBR) is widely used to treat oral bone defects. However, the osteogenic effects are limited by the deficiency of the available barrier membranes. In this study, a novel bi-layer membrane was prepared by solvent casting and electrospinning. The barrier layer made of poly (lactic-co-glycolic acid) (PLGA) was smooth and compact, whereas the osteogenic layer consisting of micro-nano bioactive glass (MNBG) and PLGA was rough and porous. The mineralization evaluation confirmed that apatite formed on the membranes in simulated body fluid. Immersion in phosphate-buffered saline led to the degradation of the membranes with proper pH changes. Mechanical tests showed that the bi-layered membranes have stable mechanical properties under dry and wet conditions. The bi-layered membranes have good histocompatibility, and the MNBG/PLGA layer can enhance bone regeneration activity. This was confirmed by cell culture results, expression of osteogenic genes, and immunofluorescence staining of RUNX-related transcription factor 2 and osteopontin. Therefore, the bi-layered membranes could be a promising clinical strategy for GBR surgery.
Keywords: Barrier membrane; Bi-layered structure; Guided bone regeneration; Micro-Nano bioactive glass.
Copyright © 2021 Elsevier B.V. All rights reserved.