The synthesis of four non-fullerene acceptors (NFAs) with a "A-π-D-π-A" structure, in which the electron-donating core is extended, was achieved. The molecules differed by the nature of the solubilizing groups on the π-spacer and/or the presence of fluorine atoms on the peripheral electron-accepting units. The optoelectronic properties of the molecules were characterized in solution, in thin film, and in photovoltaic devices. The nature of the solubilizing groups had a minor influence on the optoelectronic properties but affected the organization in the solid state. On the other hand, the fluorine atoms influenced the optoelectronics properties and increased the photo-stability of the molecules in thin films. Compared to reference ITIC, the extended molecules showed a wider absorption across the visible range and higher lowest unoccupied molecular orbital energy levels. The photovoltaic performances of the four NFAs were assessed in binary blends using PM6 (PBDB-T-2F) as the donating polymer and in ternary blends with ITIC-4F. Solar cells (active area 0.27 cm2 ) showed power conversion efficiencies of up to 11.1 % when ternary blends were processed from non-halogenated solvents, without any thermal post-treatment or use of halogenated additives, making this process compatible with industrial requirements.
Keywords: bulk-heterojunction; non-fullerene acceptors; organic photovoltaics; organic solar cells; ternary blend.
© 2021 Wiley-VCH GmbH.