Accurate recurrence risk assessment in hormone receptor positive, HER2/neu negative breast cancer is critical to plan precise therapy. CanAssist Breast (CAB) assesses recurrence risk based on tumor biology using artificial intelligence-based approach. We report CAB risk assessment correlating with disease outcomes in multiple clinically high- and low-risk subgroups. In this retrospective cohort of 925 patients [median age-54 (22-86)] CAB had hazard ratio (HR) of 3 (1.83-5.21) and 2.5 (1.45-4.29), P = 0.0009) in univariate and multivariate analysis. CAB's HR in sub-groups with the other determinants of outcome, T2 (HR: 2.79 (1.49-5.25), P = 0.0001); age [< 50 (HR: 3.14 (1.39-7), P = 0.0008)]. Besides application in node-negative patients, CAB's HR was 2.45 (1.34-4.47), P = 0.0023) in node-positive patients. In clinically low-risk patients (N0 tumors up to 5 cms) (HR: 2.48 (0.79-7.8), P = 0.03) and with luminal-A characteristics (HR: 4.54 (1-19.75), P = 0.004), CAB identified >16% as high-risk with recurrence rates of up to 12%. In clinically high-risk patients (T2N1 tumors (HR: 2.65 (1.31-5.36), P = 0.003; low-risk DMFS: 92.66 ± 1.88) and in women with luminal-B characteristics (HR: 3.24; (1.69-6.22), P < 0.0001; low-risk DMFS: 93.34 ± 1.34)), CAB identified >64% as low-risk. Thus, CAB prognostication was significant in women with clinically low- and high-risk disease. The data imply the use of CAB for providing helpful information to stratify tumors based on biology incorporated with clinical features for Indian patients, which can be extrapolated to regions with similarly characterized patients, South-East Asia.
Keywords: CanAssist breast; Early-stage; Hormone-receptor; Luminal subtypes; Prognostication.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.