Passive Control of Indoor Formaldehyde by Mixed-Metal Oxide Latex Paints

Environ Sci Technol. 2021 Jul 6;55(13):9255-9265. doi: 10.1021/acs.est.1c00912. Epub 2021 Jun 8.

Abstract

This work reports the incorporation of mixed-metal oxides (MMOs) such as Si/Ti and Si/Zr into latex paints in the form of thin coatings for permanent trapping of indoor formaldehyde. The formaldehyde removal performance of the surface coatings was evaluated in a lab-scale indoor air chamber, and the results were compared with those of powder analogues. Due to the pore blockage by the latex, the incorporation led to 6-30% reduction in adsorption capacity and 50-70% drop in the adsorption rate for MMO-latex paints relative to their powder MMO analogues. Under the operating conditions of concentration, temperature, and relative humidity, the Si/Zr-latex paints outperformed the Si/Ti counterparts. It was also observed that performance could decrease over excessive loading, for example, Si/Zr-latex paint with 15/1 Si/Zr weight ratio showed a 20% lower adsorption capacity than that of the Si/Zr-latex paint with 25/1 Si/Zr ratio at 5 ppmv, 25 °C, and 70% RH. While high temperature greatly reduced the adsorption rate of the MMO-latex paints, high humidity slightly promoted the rate of formaldehyde capture. In 10 L, flow-through chamber tests, 25Si/Zr-latex paint reduced 5 ppmv formaldehyde by up to 60% at 25 °C and 70% RH with an adsorption rate of 0.34 ppmv/h. Overall, this study highlights the potential of MMO-latex paints with optimized formation for the efficient abatement of indoor aldehydes.

Keywords: adsorption; formaldehyde removal; indoor air; latex coating; passive control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollution, Indoor* / analysis
  • Formaldehyde / analysis
  • Latex*
  • Oxides
  • Paint

Substances

  • Latex
  • Oxides
  • Formaldehyde