Top-down mass spectrometry (TD-MS) of intact proteins results in fragment ions that can be correlated to the protein primary sequence. Fragments generated can either be terminal fragments that contain the N- or C-terminus or internal fragments that contain neither termini. Traditionally in TD-MS experiments, the generation of internal fragments has been avoided because of ambiguity in assigning these fragments. Here, we demonstrate that in TD-MS experiments internal fragments can be formed and assigned in collision-based, electron-based, and photon-based fragmentation methods and are rich with sequence information, allowing for a greater extent of the primary protein sequence to be explained. For the three test proteins cytochrome c, myoglobin, and carbonic anhydrase II, the inclusion of internal fragments in the analysis resulted in approximately 15-20% more sequence coverage, with no less than 85% sequence coverage obtained. Combining terminal fragment and internal fragment assignments results in near complete protein sequence coverage. Hence, by including both terminal and internal fragment assignments in TD-MS analysis, deep protein sequence analysis, allowing for the localization of modification sites more reliably, can be possible.
Keywords: CAD; UVPD; electron capture dissociation; electron ionization dissociation; internal fragments; top-down mass spectrometry.