The previous research of clinical big data mining showed that stir-baking Semen Cuscuta with salt solution (YP) ranked the first in the usage rate of treating abortion caused by kidney deficiency. At the same time, pharmacodynamic studies also showed that YP has better effect on improving recurrent spontaneous abortion (RSA) compared to raw products of Semen Cuscuta (SP). However, there were few studies on the biomarkers of YP improving RSA. In this study, the chemical and metabonomic profiling were used to screen the quality markers of YP on improving RSA. Firstly, a metabolomics study was carried out to select representative biomarkers of RSA. The ultra-high performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UPLC-ESI-Q-TOF-MS) technique was used to investigate the components of exogenous and endogenous in serum of rats after administrated with YP and SP. As a result, 14 differential compounds were identified between the serum of rats administrated SP and YP. Compared to SP, there was an upward trend in YP of the compounds including kaempferol-3-glucuronide, iso-kaempferol-3-glucuronide, (1S) -11-hydroxyhexadecanoic acid and 3-phenylpropionic acid. Meanwhile, there was a reducing trend in YP of the compounds including kaempferol 3-arabinofuranoside, apigenin-3-O-glucoside, hyperoside, caffeic acid-β-D glucoside, dicaffeoylquinic acid, linoleic acid, 3,4-dicaffeoylquinic acid, caffeic acid, palmitic acid and methyl myristate. 12 biomarkers for RSA indication were identified. SP and YP have a certain effect on the endogenous biomarker. The regulation effect of YP was higher than that of SP. The main metabolic pathways included phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, fatty acid biosynthesis, sphingolipid metabolism, biosynthesis of unsaturated fatty acids. This study demonstrated a promising way to elucidate the active chemical and endogenous material basis of TCM.
Keywords: Metabolomics; Semen Cuscuta; Stir-baking with salt solution; UHPLC-Q-TOF-MS.
Copyright © 2021. Published by Elsevier B.V.