Canine circovirus (canineCV) has been found to be associated with vasculitis, hemorrhage, hemorrhagic enteritis, and diarrhea of canines. CanineCV, like other circoviruses, may also be associated with lymphoid depletion and immunosuppression. This circovirus has been detected worldwide in different countries and species. Recombination and mutation events in the canineCV genome have been described, indicating that the virus is continuing to evolve. However, the origin, codon usage patterns, and host adaptation of canineCV remain to be studied. Here, the coding sequences of 93 canineCV sequences available in the GenBank database were used for analysis. The results showed that canineCV sequences could be classified into five genotypes, as confirmed by phylogenetic and principal component analysis (PCA). Maximum clade credibility (MCC) and maximum-likelihood (ML) trees suggested that canineCV originated from bat circovirus. G/T and A/C nucleotide biases were observed in ORF1 and ORF2, respectively, and a low codon usage bias (CUB) was found in canineCV using an effective number of codon (ENC) analysis. Correlation analysis, ENC plot analysis and neutrality plot analysis indicated that the codon usage pattern was mainly shaped by natural selection. Codon adaptation index (CAI) analysis, relative codon deoptimization index (RCDI) analysis, and similarity index (SiD) analysis revealed a better adaption to Vulpes vulpes than to Canis familiaris. Furthermore, a cross-species transmission hypothesis that canineCV may have evolved from bats (origin analysis) and subsequently adapted to wolves, arctic foxes, dogs, and red foxes, was proposed. This study contributes to our understanding of the factors related to canineCV evolution and host adaption.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.