Objective: To assess the effects of PTH (1-34) on bone and cartilage metabolism in a collagenase-induced mouse model of osteoarthritis (OA) and examine whether PTH (1-34) affects the expression of JAK2/STAT3 and WNT5A/ROR2 in this process.
Methods: Eighteen 12-week-old male C57Bl/6 mice were randomly assigned into three groups as follows: sham group (Group A), the collagenase + saline injection group (Group B), and the collagenase + PTH (1-34) treatment group (Group C). Collagenase was injected (intra-articular) into the knee joint of Group B and C. The PTH (1-34)-treatment was started at 6 weeks after the operation and lasted for 6 weeks. Cartilage pathology was evaluated by gross visual, histological, and immunohistochemical assessments. Subchondral bone was evaluated by microcomputed tomography (micro-CT) and immunohistochemical analyses.
Results: The OARSI macroscopic and microscopic scores of Group B were higher than those of Group A (P = 0.026; P = 0.002, respectively). Group C showed statistically significant differences in macroscopic and microscopic scores from Group B (P = 0.041; P = 0.008, respectively). The results showed that the Col-II and AGG expression levels in the cartilage tissue were significantly lower in Group B than Group A (P < 0.001; P = 0.008, respectively). The Col-II and AGG expression levels were significantly higher in Group C than Group B (P = 0.009; P = 0.014, respectively). MMP-13, ADAMTS-4, Caspase-3, P53, and Bax expression levels were significantly higher in Group B than the Group A (P < 0.001; P < 0.001; P = 0.04; P < 0.001; P = 0.005, respectively); however, the cartilage tissue in Group C showed significantly less ADAMTS-4, MMP-13, Caspase-3, P53, and Bax expression than Group B (P < 0.001, P < 0.001, P = 0.044; P = 0.002; P = 0.005, respectively). Over-expressed JAK2/STAT3 and WNT5A/ROR2 were observed in both cartilage and subchondral bone in this model; however, these changes were prevented by PTH (1-34) treatment. These parameters (bone mineral density, bone volume ratio, trabecular bone pattern factor, and structure model index) of micro-CT indicated subchondral bone loss and architecture changes in Group B, but improvements in these parameters in Group C.
Conclusions: PTH (1-34) exhibits protective effects on both cartilage and subchondral bone in a collagenase-induced OA mouse model, and it may be involved in down-regulating the expression of JAK2/STAT3 and WNT5A/ROR2.
Keywords: Cartilage; JAK2; Osteoarthritis; Parathyroid hormone; Subchondral bone.
© 2021 The Authors. Orthopaedic Surgery published by Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.