Automatic Inverse Design of High-Performance Beam-Steering Metasurfaces via Genetic-type Tree Optimization

Nano Lett. 2021 Jun 23;21(12):4981-4989. doi: 10.1021/acs.nanolett.1c00720. Epub 2021 Jun 10.

Abstract

We introduce a genetic-type tree search (GTTS) algorithm combined with unsupervised clustering for the automatic inverse design of high-performance metasurfaces. With the proposed method, we realize highly directive beam-steering metasurfaces via the cooptimization of the amplitude and phase. In comparison with previous topology optimization approaches, the developed GTTS algorithm optimizes the organization of subwavelength nanoantennas and, thus, is applicable to the design of both passive and active metasurfaces. The optimized beam-steering metasurface specifically exhibits a nearly constant directivity when the steering angle varies from 5° to 30°. Furthermore, the optimized nonintuitive reflectance and phase profiles assist in achieving highly directive beam steering when the phase modulation range is <180°, which was previously challenging. Our approach can diminish the requirements of scattering light properties with substantially enhanced angular resolution of beam-steering metasurfaces, which enables the realization of high-performance metasurfaces that will be promising for a wide range of advanced nanophotonic applications.

Keywords: Active beam-steering metasurface; Beam deflection; Integer-valued optimization; Inverse design; Monte Carlo tree search; Stochastic optimization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Trees*