Revealing the structural and functional change of microvasculature is essential to match vascular response with neuronal activities in the investigation of neurovascular coupling. The increasing use of rhesus models in fundamental and clinical studies of neurovascular coupling presents an emerging need for a new imaging modality. Here we report a structural and functional cerebral vascular study of rhesus monkeys using an ultrafast, portable, and high resolution photoacoustic microscopic system with a long working distance and a special scanning mechanism to eliminate the relative displacement between the imaging interface and samples. We derived the structural and functional response of the cerebral vasculature to the alternating normoxic and hypoxic conditions by calculating the vascular diameter and functional connectivity. Both vasodilatation and vasoconstriction were observed in hypoxia. In addition to the change of vascular diameter, the decrease of functional connectivity is also an important phenomenon induced by the reduction of oxygen ventilatory. These results suggest that photoacoustic microscopy is a promising method to study the neurovascular coupling and cerebral vascular diseases due to the advanced features of high spatiotemporal resolution, excellent sensitivity to hemoglobin, and label-free imaging capability of observing hemodynamics.
Keywords: Functional connectivity; Optical resolution photoacoustic microscopy; Rhesus monkey.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.