Designing efficient electrocatalysts for the oxygen reduction reaction (ORR) is crucial to enhance the energy efficiencies of metal-air batteries and fuel cells. Palladium (Pd) catalysts show great potential due to their high intrinsic activity towards ORR but suffer from inferior durability. Here, we aim to employ tin oxide (SnO2) supports to tailor the lattice strain and electron density of Pd catalysts to enhance their ORR performance. By using electrospinning and solvothermal techniques, a hierarchical Pd/SnO2 hybrid catalyst was facilely synthesized with Pd nanoparticles anchored onto both the inside and outside walls of nanotube-like SnO2 supports. Owing to the SnO2 supports and the endowing metal-support interactions, tensile-strain and electron-rich features were both verified for the Pd nanoparticles in the Pd/SnO2 catalyst. In comparison, no such features were found for the Pd nanoparticles in the Pd/C catalyst. As a consequence, the Pd/SnO2 hybrid catalyst exhibits 2.5-times higher mass activity than the Pd/C catalyst and greatly improved durability with a current decay of 4% loss over 50 h compared with that (18%) of the Pd/C catalyst.
Keywords: Electrocatalyst; Electron density; Lattice strain; Oxygen reduction reaction.
Copyright © 2021 Elsevier Inc. All rights reserved.