Ionic conductive hydrogel with multifunctional properties have shown promising application potential in various fields, including electronic skin, wearable devices and sensors. Herein, a highly stretchable (up to 2800% strain), tough, adhesive ionic conductive hydrogel are prepared using cationic nanocellulose (CCNC) to disperse/stabilize graphitic carbon nitride (g-C3N4), forming CCNC-g-C3N4 complexes and in situ radical polymerization process. The ionic interactions between CNCC and g-C3N4 acted as sacrificial bonds enabled highly stretchability of the hydrogel. The hydrogel showed high sensitivity (gauge factor≈5.6, 0-1.6% strain), enabling the detection of human body motion, speech and exhalation. Furthermore, the hydrogel based self-powered device can charge 2.2 μF capacitor up to 15 V from human motion. This multifunctional hydrogel presents potential applications in self-powered wearable electronics.
Keywords: Electronic skin; Ionic conductive hydrogel; Self-powered device; Strain sensor.
Copyright © 2021 Elsevier Ltd. All rights reserved.