PPAR control of metabolism and cardiovascular functions

Nat Rev Cardiol. 2021 Dec;18(12):809-823. doi: 10.1038/s41569-021-00569-6. Epub 2021 Jun 14.

Abstract

Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cardiovascular Diseases* / metabolism
  • Cardiovascular Diseases* / prevention & control
  • Humans
  • PPAR alpha* / metabolism
  • PPAR delta* / metabolism
  • PPAR gamma* / metabolism

Substances

  • PPAR alpha
  • PPAR delta
  • PPAR gamma