Evaluation and comparison of accurate automated spinal curvature estimation algorithms with spinal anterior-posterior X-Ray images: The AASCE2019 challenge

Med Image Anal. 2021 Aug:72:102115. doi: 10.1016/j.media.2021.102115. Epub 2021 Jun 1.

Abstract

Scoliosis is a common medical condition, which occurs most often during the growth spurt just before puberty. Untreated Scoliosis may cause long-term sequelae. Therefore, accurate automated quantitative estimation of spinal curvature is an important task for the clinical evaluation and treatment planning of Scoliosis. A couple of attempts have been made for automated Cobb angle estimation on single-view x-rays. It is very challenging to achieve a highly accurate automated estimation of Cobb angles because it is difficult to utilize x-rays efficiently. With the idea of developing methods for accurate automated spinal curvature estimation, AASCE2019 challenge provides spinal anterior-posterior x-ray images with manual labels for training and testing the participating methods. We review eight top-ranked methods from 12 teams. Experimental results show that overall the best performing method achieved a symmetric mean absolute percentage (SMAPE) of 21.71%. Limitations and possible future directions are also described in the paper. We hope the dataset in AASCE2019 and this paper could provide insights into quantitative measurement of the spine.

Keywords: Automated estimation; Challenge; Scoliosis; Spinal curvature.

Publication types

  • Review

MeSH terms

  • Algorithms
  • Humans
  • Radiography
  • Scoliosis* / diagnostic imaging
  • Spine* / diagnostic imaging
  • X-Rays