Gyrokinetic simulations of turbulence are fundamental to understanding and predicting particle and energy loss in magnetic fusion devices. Previous works have used model collision operators with approximate field-particle terms of unknown accuracy and/or have neglected collisional finite Larmor radius effects. This work moves beyond models to demonstrate important corrections using a gyrokinetic Fokker-Planck collision operator with the exact field-particle terms, in realistic simulations of turbulence in magnetically confined fusion plasmas. The exact operator shows significant corrections for temperature-gradient-driven trapped electron mode turbulence and zonal flow damping, and for microtearing modes in a Joint European Torus pedestal under ITER-like wall conditions. Analysis of the corrections using parameter scans motivates an accurate model which closely reproduces the exact results while reducing computational demands.