Characterization of Uranyl Coordinated by Equatorial Oxygen: Oxo in UO3 versus Oxyl in UO3

J Phys Chem A. 2021 Jul 1;125(25):5544-5555. doi: 10.1021/acs.jpca.1c03818. Epub 2021 Jun 17.

Abstract

Uranium trioxide, UO3, has a T-shaped structure with bent uranyl, UO22+, coordinated by an equatorial oxo, O2-. The structure of cation UO3+ is similar but with an equatorial oxyl, O•-. Neutral and cationic uranium trioxide coordinated by nitrates were characterized by collision induced dissociation (CID), infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory. CID of uranyl nitrate, [UO2(NO3)3]- (complex A1), eliminates NO2 to produce nitrate-coordinated UO3+, [UO2(O)(NO3)2]- (B1), which ejects NO3 to yield UO3 in [UO2(O)(NO3)]- (C1). Finally, C1 associates with H2O to afford uranyl hydroxide in [UO2(OH)2(NO3)]- (D1). IRMPD of B1, C1, and D1 confirms uranyl equatorially coordinated by nitrate(s) along with the following ligands: (B1) radical oxyl O•-; (C1) oxo O2-; and (D1) two hydroxyls, OH-. As the nitrates are bidentate, the equatorial coordination is six in A1, five in B1, four in D1, and three in C1. Ligand congestion in low-coordinate C1 suggests orbital-directed bonding. Hydrolysis of the equatorial oxo in C1 epitomizes the inverse trans influence in UO3, which is uranyl with inert axial oxos and a reactive equatorial oxo. The uranyl ν3 IR frequencies indicate the following donor ordering: O2-[best donor] ≫ O•-> OH-> NO3-.