The genetic basis of peripheral T-cell lymphoma (PTCL) is complex and encompasses several recurrent fusion transcripts discovered over the past years by means of massive parallel sequencing. However, there is currently no affordable and rapid technology for their simultaneous detection in clinical samples. Herein, we developed a multiplex ligation-dependent RT-PCR-based assay, followed by high-throughput sequencing, to detect 33 known PTCL-associated fusion transcripts. Anaplastic lymphoma kinase (ALK) fusion transcripts were detected in 15 of 16 ALK-positive anaplastic large-cell lymphomas. The latter case was further characterized by a novel SATB1_ALK fusion transcript. Among 239 other PTCLs, representative of nine entities, non-ALK fusion transcripts were detected in 24 samples, mostly of follicular helper T-cell (TFH) derivation. The most frequent non-ALK fusion transcript was ICOS_CD28 in nine TFH-PTCLs, one PTCL not otherwise specified, and one adult T-cell leukemia/lymphoma, followed by VAV1 rearrangements with multiple partners (STAP2, THAP4, MYO1F, and CD28) in five samples (three PTCL not otherwise specified and two TFH-PTCLs). The other rearrangements were CTLA4_CD28 (one TFH-PTCL), ITK_SYK (two TFH-PTCLs), ITK_FER (one TFH-PTCL), IKZF2_ERBB4 (one TFH-PTCL and one adult T-cell leukemia/lymphoma), and TP63_TBL1XR1 (one ALK-negative anaplastic large-cell lymphoma). All fusions detected by our assay were validated by conventional RT-PCR and Sanger sequencing in 30 samples with adequate material. The simplicity and robustness of this targeted multiplex assay make it an attractive tool for the characterization of these heterogeneous diseases.
Copyright © 2021 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.