The relatively low specific capacitance of flexible carbons hinders their practical application for fabricating high-performance flexible supercapacitors. In this work, a surface engineering method is proposed to boost the supercapacitive performance of the flexible carbon. In this method, a flexible carbon was fabricated from carbon felt via co-activation with potassium argininate and potassium hydroxide (KOH) as activators, and the resulting material is abbreviated as AKCF. Unlike traditional KOH activation processes, the addition of potassium argininate can produce a micro-graphitized carbon layer to be the outer layer of AKCF fibers for achieving better electronic transfer. Due to the improved conductivity and lower charge transfer resistance endowed by a thin micro-graphitized carbon layer, the capacitance of the AKCF-0.1 (0.1 M arginine was used) electrode obtained by the co-activation process is elevated to a 1.8-fold higher value of 403 C·g-1 (2583 mC·cm-2) relative to the AKCF-0 (0 M arginine was used) electrode prepared by KOH activation alone (222 C·g-1 or 1369 mC·cm-2). Moreover, this AKCF-0.1 electrode also displays satisfactory rate capability (66% capacitance retention after a 20-fold current increase) and highly stable cycling performance (no capacitance decline after 20,000 cycles). In addition, the asymmetric supercapacitors constructed with this AKCF-0.1 electrode as the flexible negative electrode expresses high energy densities of 68.4 Wh·kg-1 and 0.139 mWh·cm-2 in aqueous and gel electrolytes, respectively.
Keywords: Electrode; Flexible carbon; Supercapacitor; Surface engineering.
Copyright © 2021 Elsevier Inc. All rights reserved.